

SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Algebra and Calculus(20HS0830)Course & Branch: B.Tech, Common to all Year &Sem: I year I semRegulation: R20

UNIT –I MATRICES

1	a) Define rank of a matrix	[L1][CO1]	[2M]
	b) Reduce the matrix A= $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ into Echelon form and find its rank?	[L3][CO1]	[5M]
	c) Reduce the matrix A= $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ into Echelon form and find its rank?	[L3][CO1]	[5M]
2	a) Reduce the matrix A= $\begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ into Echelon form and find its rank?	[L3][CO1]	[6M]
	b) Explain the working procedure to solve homogeneous and non-homogeneous system of linear equations.	[L2][CO1]	[6M]
3	a)Solve completely the system of equations $x+2y+3z=0$, $3x+4y+4z=0$, $7x+10y+12z=0$.	[L3][CO1]	[6M]
	b)Show that the equations $x + y + z = 4$; $2x + 5y - 2z = 3$; $x + 7y - 7z = 5$ are not consistent.	[L2][CO1]	[6M]
4	a) Find whether the following equations are consistent if so solve them $x + y + 2z = 4$; $2x - y + 3z = 9$; $3x - y - z = 2$.	[L3][CO1]	[8M]
	b) Define Eigen values and Eigen vectors with example	[L1][CO1]	[4M]
5	a)List the properties of Eigen values and Eigen vectors	[L1][CO1]	[4M]
	b)Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$	[L3][CO1]	[8M]
6	a) Determine the Eigen values of A^{-1} where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	[L3][CO1]	[4M]
	b) Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$	[L2][CO1]	[8M]
7	Find the Eigen values of matrix A and A ⁻¹ and also find the Eigen vectors of the matrix A, where $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	[L1][CO1]	[12M]
8	a) State Cayley - Hamilton theorem.	[L1][CO1]	[2M]

Course Code: 20HS0830

	b) Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation and find A^{-1} by using Cayley - Hamilton theorem.	[L2][CO1]	[10M]
	ГООЛІ		
9	a) Verify Cayley-Hamilton theorem for the matrix $\mathbf{A} = \begin{bmatrix} 0 & -0 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$	[L4][CO1]	[6M]
	b) Verify Cayley Hamilton theorem for the matrix A = $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$	[L4][CO1]	[6M]
10	Verify Cayley Hamilton theorem for $\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and find A^{-1} and A^4	[L4][CO1]	[12M]
	using Cayley-Hamilton theorem.		

R20

R20 UNIT –II MULTI VARIABLE CALCULUS

1	a) State Roll theorem and verify Rolle's theorem for the function $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)} \right]$ in $[a, b], a > 0, b > 0$	[L4][CO2]	[6M]
	b) Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$	[L4][CO2]	[6M]
2	a)State Lagrange's mean value theorem	[L1][CO2]	[2M]
	b) Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1, <i>e</i>].	[L4][CO2]	[5M]
	c) Verify Lagrange's mean value theorem for $f(x)=x^3 - x^2 - 5x + 3in[0,4]$.	[L4][CO2]	[5M]
3	a)Verify Lagrange's mean value theorem for the function $f(x) = x(x-1)(x-2)in \left[0,\frac{1}{2}\right]$.	[L4][CO2]	[6M]
	b) State Taylor's theorem with Lagrange's form of remainder	[L1][CO2]	[2M]
	c) Express the polynomial $2x^3 + 7x^2 + x$ -6 in powers of $(x - 2)$ using Taylor's series.	[L2][CO2]	[4 M]
4	a) Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log 1.1$ correct to 4 decimal places using Taylor's series.	[L2][CO2]	[6M]
	b) Expand sin x in powers of $(x-\frac{\pi}{2})$ upto the term containing $(x-\frac{\pi}{2})^4$ by Taylor's	[L2][CO2]	[6M]
	series.		
5	a) State Maclaurin's theorem with Lagrange's form of remainder.	[L1][CO2]	[2M]
	b) Using Maclaurin's series expand tan x upto the fifth power of x and hence find	[L3][CO2]	[10M]
	the series for $\log(\sec x)$.		
6	a)What is the chain rule of partial differentiation and total derivative of a function $Z=f(x,y)$?	[L1][CO2]	[2M]
	b) If $u = f(y - z, z - x, x - y)$ prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ by using Chain rule	[L3][CO2]	[5M]
	C) $u = \sin^{-1}(x - y)$, where $x = 3t$, $y = 4t^3$, then show that $\frac{du}{dt} = \frac{3}{\sqrt{1-t^2}}$ by total derivative.	[L2][CO2]	[5M]
7	a) Describe the Jacobian transformation and functional dependence of two variables.	[L2][CO2]	[2M]
	b) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1} x + \tan^{-1} y$, find $\frac{\partial(u,v)}{\partial(x,y)}$	[L3][CO2]	[5M]
	c) Verify if $u = 2x - y + 3z$, $v = 2x - y - z$, $w = 2x - y + z$ are functionally	[L2][CO2]	[5M]
Q	dependent and it so, find the relation between them.		[5]/[]
0	rule.		[314]
	b) Find the stationary points of $u(x, y) = sinx. siny. sin(x + y)$	[L3][CO2]	[7M]
	where $0 < x < \pi$, $0 < y < \pi$ and find the maximum of u.		
9	a)Explain the working procedure of method of Lagrange multipliers with three variables.	[L2][CO2]	[2M]
	b) Find the shortest distance from origin to the surface $xyz^2 = 2$.	[L3][CO2]	[5M]
	c) Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$.	[L3][CO2]	[5M]
10	a) Find a point on the plane $3x+2y+z-12=0$ which is nearest to the origin.	[L3][CO2]	[6M]
	b) Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest and farthest from the point (3,1,-1).	[L3][CO2]	[6M]

UNIT –III INTEGRAL CALCULUS

1	a) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$	[L5][CO3]	[6M]
	b) Evaluate $\int_{0}^{1} \frac{(\sin^{-1} x)^{3}}{\sqrt{1-x^{2}}} dx$	[L5][CO3]	[6M]
2	a) Evaluate the following improper integrals i) $\int_{1}^{\infty} \frac{1}{x^4} dx$. ii) $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$.	[L5][CO3]	[6M]
	b) Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi$.	[L2][CO3]	[6M]
3	a) Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$	[L5][CO3]	[6M]
	b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dy dx$	[L5][CO3]	[6M]
4	a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$.	[L5][CO3]	[6M]
	b) Evaluate $\int_{0}^{4} \int_{0}^{x^{2}} e^{\frac{y}{x}} dy dx$	[L5][CO3]	[6M]
5	a) Describe the working rule for change of order of integration in double integrals	[L2][CO4]	[2M]
	b) Change the order of integration in $I = \int_{0}^{1} \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the	[L5][CO4]	[10M]
	same.		
6	a) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{x} \frac{e^{-y}}{y} dy dx.$	[L5][CO4]	[6M]
	b) By changing the order of integration, evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$.	[L5][CO4]	[6M]
7	a) How to change the variables from Cartesian to polar coordinates in double integrals?	[L2][CO4]	[2M]
	b) Evaluate the integral by transforming into polar coordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y\sqrt{x^{2}+y^{2}} dx dy.$	[L5][CO4]	[10M]
8	a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by converting into polar coordinates.	[L5][CO4]	[6M]
	b) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates.	[L5][CO4]	[6M]
9	a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$.	[L5][CO4]	[6M]
	b) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.	[L5][CO4]	[6M]
10	a) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z.}^{x+z} (x+y+z) dx dy dz$	[L5][CO4]	[6M]
	b) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dx dy$.	[L5][CO4]	[6M]

UNIT –IV VECTOR DIFFERENTIATION

1	a) Give one example each for Scalar and Vector point functions	[L2][CO5]	[2M]
	b) Define vector operator del and if $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then show that $\nabla r = \frac{\overline{r}}{r}$	[L1][CO5]	[4M]
	c) Find grad f if $f = xz^4 - x^2y$ at a point $(1, -2, 1)$. Also find $ \nabla f $	[L3][CO5]	[6M]
2	a) Define Gradient of a scalar point function	[L1][CO5]	[2M]
	b) Show that $\nabla(\mathbf{r}^n) = n \mathbf{r}^{n-2} \overline{\mathbf{r}}$	[L2][CO5]	[4M]
	c) Find the directional derivative of $2xy + z^2$ at $(1, -1, 3)$ in the direction of $i^2 + 2i^2 + 3k^2$	[L3][CO5]	[6M]
3	a) Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in the direction of normal to the surface $3xy^2 + y = z$ at (0,1,1)	[L3][CO5]	[6M]
	b) Find the maximum or greatest value of the directional derivative of $f = x^2 y z^3$ at the point (2,1, -1).	[L3][CO5]	[6M]
4	a) Find the angle between the normal to the surface $xy = z^2$ at the points $(4,1,2)$ and $(3,3,-3)$.	[L3][CO5]	[6M]
	b) Define Divergence of a vector point function	[L1][CO5]	[2M]
	c) Find the divergence of $\overline{f} = (xyz)\vec{i} + (3x^2y)\vec{j} + (xz^2 - y^2z)\vec{k}$.	[L3][CO5]	[4M]
5	a) Find $div\overline{f}$ if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L3][CO5]	[6M]
	b) Show that $\overline{f} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x-2z)\overline{k}$ is solenoidal.	[L2][CO5]	[6M]
6	a) Find 'a' if $\overline{f} = y(ax^2 + z)\overline{i} + x(y^2 - z^2)\overline{j} + 2xy(z - xy)\overline{k}$ is solenoidal.	[L3][CO5]	[6M]
	b) Define Curl of a vector point function	[L1][CO5]	[2M]
	c) Find curl of the vector $\overline{f} = (x + y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$.	[L3][CO5]	[4M]
7	a) Find curl \overline{f} if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L3][CO5]	[6M]
	b) Prove that $\overline{f} = (y+z)\overline{i} + (z+x)\overline{j} + (x+y)\overline{k}$ is irrotational.	[L5][CO5]	[6M]
8	a) If $\bar{f} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational	[L3][CO5]	[6M]
	then find the constants <i>a</i> , <i>b</i> and <i>c</i> .	[1,2][005]	
	b) Show that the vector $(x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational and	[L3][C05]	[6][1]
9	a) Find $\nabla \times (\nabla \times \vec{f})$ if $\vec{f} = (x^2 y)\vec{i} - (2xz)\vec{i} + (2yz)\vec{k}$	[L3][CO5]	[6M]
-	b) Prove vector identity that $curl(arad \phi) = 0$	[L5][C05]	[6M]
10	a) Prove that $div(curf f) = 0$ where \overline{f} is vector point function	[L5][C05]	[6M]
	b) Find $(A\nabla)\phi$ at $(1-1,1)$ if $A = 3px^2\bar{i} + 2px^3\bar{i} - x^2yz\bar{k}$ and $\phi = 3x^2 - yz$	[L3][C05]	[6M]
	$ y_{1} = y_{2} + y_{3} + y_{4} + y_{5} + y_{$	[20][000]	[011]

UNIT –V VECTOR INTEGRATION & INTEGRAL THEOREMS

1	a) If $\overline{F} = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$. Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ along the curve $y = x^3$	[L5][CO6]	[6M]
	in xy-plane from (1,1)to(2,8).		
	b) Define work done by a force.	[L1][CO6]	[1M]
	c) Find the work done by a force $\overline{F} = (2y+3)\vec{i} + (xz)\vec{j} + (yz-x)\vec{k}$ when it	[L3][CO6]	[5M]
	moves a particle from $(0,0,0)to(2,1,1)$ along the curve $x = 2t^2$; $y = t$; $z = t^3$.		
2	a) Define line integral and circulation	[L1][CO6]	[2M]
	b) If $\vec{F} = (x^2 + y^2)\vec{i} - (2xy)\vec{j}$. Evaluate $\int_c \vec{F} \cdot d\vec{r}$ where 'c' is the rectangle	[L5][CO6]	[10M]
	in xy-plane bounded by $y = 0$; $y = b$ and $x = 0$; $x = a$.		
3	a) Define surface integral	[L1][CO6]	[1M]
	b) Evaluate $\int_{s} \vec{F} \cdot \vec{n} ds$, where $\vec{F} = 18z\vec{i} - 12\vec{j} + 3y\vec{k}$ and 's' is the part of the	[L5][CO6]	[6M]
	surface of the plane $2x + 3y + 6z = 12$ located in the first octant.		
	c) Evaluate $\int_{a} \bar{F} \cdot \bar{n} ds$. where $\bar{F} = 12x^2y\vec{i} - 3yz\vec{j} + 2z\vec{k}$ and 's' is the portion of	[L5][CO6]	[5M]
	the plane $x + y + z = 1$ located in the first octant.		
4	a) Define volume integral	[L1][CO6]	[1M]
	b) If $\overline{F} = 2xz\overline{i} - x\overline{j} + y^2\overline{k}$. Evaluate $\int_{U} \overline{F} dv$ where 'v' is the region bounded by	[L5][CO6]	[5M]
	the surfaces $x = 0$; $x = 2$: $y = 0$; $y = 6$ and $z = x^2$; $z = 4$.		
	c) If $\overline{F} = (2x^2 - 3z)\vec{i} - 2xy\vec{j} - 4x\vec{k}$ then evaluate $\int_{a} \nabla \cdot \overline{F} dv$ where 'v' is the	[L5][CO6]	[6M]
	closed region bounded by $x = 0$; $y = 0$; $z = 0$ and $2x + 2y + z = 4$.		
5	a) State Green's theorem in a plane.	[L1][CO6]	[2M]
	b) Verify Green's theorem in a plane for $\oint_{C} (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where 'c'	[L4][CO6]	[10M]
	is a square with vertices $(0,0)(2,0)(2,2)$ and $(0,2)$.		
6	a) Apply Green's theorem to evaluate $\oint_c (2x^2 - y^2)dx + (x^2 + y^2)dy$ where 'c'	[L3][CO6]	[6M]
	is the curve enclosed by the x-axis and upper half of the circle $x^2 + y^2 = a^2$		
1	is the curve enclosed by the x taxis and apper han of the choice x + y = u :		
	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the	[L5][CO6]	[6M]
	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$.	[L5][CO6]	[6M]
7	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem.	[L5][CO6] [L1][CO6]	[6M]
7	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint (ydx + zdy + xdz)$ where c is the curve of	[L5][CO6] [L1][CO6] [L3][CO6]	[6M] [2M] [10M]
7	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$	[L5][CO6] [L1][CO6] [L3][CO6]	[6M] [2M] [10M]
7	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{i}$ taken around the rectangle	[L5][CO6] [L1][CO6] [L3][CO6]	[6M] [2M] [10M]
7	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = \pm b$.	[L5][CO6] [L1][CO6] [L3][CO6] [L4][CO6]	[6M] [2M] [10M]
7 8 9	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = \pm b$. a) State Gauss's divergence theorem.	[L5][CO6] [L1][CO6] [L3][CO6] [L4][CO6]	[6M] [2M] [10M] [12M]
7 8 9	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = \pm b$. a) State Gauss's divergence theorem. b) Use Divergence theorem to evaluate $\iint_{\overline{F}} \overline{F} \cdot ds$ where $\overline{F} = 4x\overline{i} - 2y^2\overline{j} + z^2\overline{k}$ and	[L5][CO6] [L1][CO6] [L3][CO6] [L4][CO6] [L1][CO6] [L5][CO6]	[6M] [2M] [10M] [12M] [2M] [10M]
7 8 9	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = \pm b$. a) State Gauss's divergence theorem. b) Use Divergence theorem to evaluate $\iint_s \overline{F} \cdot ds$ where $\overline{F} = 4x\overline{i} - 2y^2\overline{j} + z^2\overline{k}$ and (3) is the curve of $x + z = a$.	[L5][CO6] [L1][CO6] [L3][CO6] [L4][CO6] [L1][CO6] [L5][CO6]	[6M] [2M] [10M] [12M] [2M] [10M]
7 8 9	b) Evaluate by Green's theorem $\oint_c (y - \sin x)dx + \cos xdy$ where 'c' is the triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = \pm b$. a) State Gauss's divergence theorem. b) Use Divergence theorem to evaluate $\iint_s \overline{F} \cdot ds$ where $\overline{F} = 4x\overline{i} - 2y^2\overline{j} + z^2\overline{k}$ and 'S' is the surface bounded by the region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$.	[L5][CO6] [L1][CO6] [L3][CO6] [L4][CO6] [L5][CO6]	[6M] [2M] [10M] [12M] [2M] [10M]
7 8 9 10	b) Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is the triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $\pi y = 2x$. a) State Stoke's theorem. b) Apply Stoke's theorem to evaluate $\oint_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + z = a$ Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a$, $y = \pm b$. a) State Gauss's divergence theorem. b) Use Divergence theorem to evaluate $\iint_s \overline{F} \cdot ds$ where $\overline{F} = 4x\overline{i} - 2y^2\overline{j} + z^2\overline{k}$ and 'S' is the surface bounded by the region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$. Verify Gauss's divergence theorem for $\overline{F} = (x^3 - yz)\overline{i} - 2x^2y\overline{j} + z\overline{k}$ taken over	[L5][CO6] [L1][CO6] [L3][CO6] [L4][CO6] [L5][CO6] [L4][CO6]	[6M] [2M] [10M] [12M] [2M] [10M]